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Counting Sums of Two Squares: 
The Meissel-Lehmer Method 

By P. Shiu 

Abstract. In 1870, E. D. F. Meissel developed a method for computing the individual values of 
the prime-counting function, and, in 1959, D. H. Lehmer simplified and extended Meissel's 
method. Let W(x) count the numbers not exceeding x that are sums of two squares. We 
develop a variant of the Meissel-Lehmer method for W(x) and use it to calculate W(1012). 

1. Introduction. Let W denote the set of positive integers that are sums of two 
squares. Euler proved that n e W if and only if every prime divisor p of n 
satisfying p 3 (mod 4) divides n to an exact even power. In 1908, Landau [6] 
proved that if W(x) counts those n e W with n < x, then, as x - o, 

(1.1) W(x) - Bx/liogx, 

where 

1 1/ -1/2 (1.2) B=-H Ii - 
V2 p=3(mod4) P 

However, the exact value for W(x) has not been given for any x > 105. 
Let U be the subset of squarefree odd members of W, and let V be the subset of 

those n e W with the property that 2 divides n to an exact even power. We observe 
that every number n can be written uniquely as im, where / is a squarefree odd 
number and m is either a square or twice a square; and it is clear that n E W if and 
only if 1 e U. Let U(x) and V(x) be the counting functions on the sets U and V, 
respectively. We then have 

(1.3) V(x)= E U(xk2), 

and 

(1.4) W(x) = V(x) + V(x/2). 

It may be of interest to point out that W(x) can be interpreted geometrically as the 
number of circles centered at the origin, passing through lattice points and having 
radii not exceeding Vx. Thus our problem is related to the circle problem of Gauss, 
which is concerned with the number R(x) of lattice points inside the circle centered 
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at the origin with radius x. It is known that R(x) has the asymptotic formula 

R(x) = rx + O(x), 

where 4 < 0 < - (see, for example, [3]) and exact values for R(x), with x up to 
about 7 x 1010, are given in [4]. 

This paper develops an efficient method for evaluating U(x) so that W(x) can be 
obtained from (1.3) and (1.4). By Euler's theorem, U is the set of products of distinct 
primes p 1 (mod 4), and so the usual sieve argument, which involves sifting the 
arithmetic progression n 1 (mod 4), n < x, through primes p < FIE, will give the 
simple formula (2.2) for U(x). But this formula is of little practical or theoretical use 
because of the large number of terms associated with the "Legendre sum". In other 
words, we encounter the same difficulty as in applying the sieve of Eratosthenes- 
Legendre in the evaluation of 7T(x), the number of primes not exceeding x. In 1870 
Meissel [8] developed a formula for 7T(x) which involves sifting the primes p < xl/3 
only, and in 1959 Lehmer [7] generalized this formula so that it involves sifting 
through only the first a primes, where a is a parameter which he set as g (X1/4). The 
purpose of this paper is to develop the Meissel-Lehmer method for the evaluation of 
U(x), which is then applied to calculate W(x) with x = 10k for k = 1, 2, ... , 12. 

Very recently, Lagarias, Miller and Odlyzko [5] gave further refinements of the 
Meissel-Lehmer method for 7T(x) and gave an asymptotic running time analysis of 
their algorithm on a Random Access Machine with and without parallel processors. 
Much of what they discussed is, of course, very relevant to the problem discussed 
here. The author is indebted to the referee for mentioning their work and is grateful 
to the editor for a preprint of [5]. 

2. Notation. The letters p, q, r are reserved for primes with q 1 (mod 4), r 3 
(mod 4). We write p(0) = 2, and, for a> 1, p(a) denotes the ath odd prime; also, 

p(a,b) =p(a)p(a + 1) ... p(b), 1 < a < b. 

For an odd squarefree integer d, we define 8 = 8(d) by 8 = dFlqjdq; that is, if 
d = ao3 where a, /P are products of primes q, r respectively, then 8 = a2/3. As usual, 
,u(d) is the Mobius function and X(d) is the nonprincipal character mod 4, and we 
shall write Sa and X a for 8((p(a)) and x(p(a)), respectively. 

We next define, for odd 1, 

N(x; d,l) =|{n: 1 < n < x, 8(d)In, n I (mod4)} 1, 

and 

(2.1) p(x; a,l)= u p(d)N(x; d,l). 
dIp(l,a) 

We call O(x; a, 1) a Legendre sum; by the inclusion-exclusion principle it counts the 
numbers n < x, n / (mod 4) with the property that n is not divisible by q2, nor by 
r, for any q, r < p(a). In particular, therefore, 

(2.2) (p(x; a, 1) = U(x) if p (a + 1) > X1/2. 

By the Meissel-Lehmer formula for U(x), we mean an extension of this formula 
relating U(x) and the Legendre sum p(x; a, 1), which holds when p(a + 1) < X112. 
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The numbers of primes p, r < x are denoted by 7T(x) and 7T43(X), respectively, 
and the mth number in U is denoted by urn. For fixed x and a with p(a) < x we 
can choose M so that 1 < UM < x/p2(a) and we define 

Xm = X/Umm 1< m < M, 
so that p(a) < XM < ... = v'=F. In Section 5 we shall also write xM?1 for 

p(a). 

3. The Meissel-Lehmer Formula for U(x). We need some more notation in order 
to state the Meissel-Lehmer formula for U(x). Let k = k(n, p) denote the highest 
power of p which divides n, that is pk kn and pk+1 + n. We define 

R(n; a,b) = 2 E [k(n,q)/2] + E k(n,r). 
p(al)<q<p(b) p(a)<r~p(b)) 

In other words, 2(n; a, b) counts the prime divisors q, r of n with p(a) < q, 
r < p (b), taking account of multiplicity in such a way that each q is counted only 
the greatest even number of times. With this notation, we see that U is the set of odd 
numbers n with S2(n; 0, n) = 0. 

For k > 1, we now define Uk(x, a) to be the number of odd numbers n < x with 

S2(n; 0, a) =0, O 2(n; a, n) = k. 

For example, U2(x, a) counts the odd numbers n < x which are not divisible by q2, 
nor by r, for any q,r < p(a), but are either divisible by q2 (and possibly q3, but not 
q4) for precisely one q > p(a), or divisible by r1r2 for precisely two r1, r2 with 
r2 > r, > p(a), but not divisible by q2r for any q, r > p(a). The Meissel-Lehmer 
formula for U(x) now takes the form 

p(x; a, 1) = U(x) + U2(x, a) + U4(x, a) + 

and we also have 

p(x; a, -1) = U1(x, a) + U3(x, a) + U5(x, a) + 

Both these series terminate since Uk(x, a) = 0 if p(a + 1)> xl/k. In particular, 
therefore, 

(3.1) T(x; a, 1) = U(x) + U2(x, a) if p(a + 1) > X114, 

and 

(3.2) T(x; a,-1) = U1(x) if p(a + 1) > X113. 

Our next task is to develop methods, which are parallel to those of Meissel and 
Lehmer, to evaluate p(x; a, 1) and U2(x, a) so that U(x) can be obtained from 
(3.1). 

For fixed x, the computing times of (p(x; a, 1) and U2(x, a) are increasing and 
decreasing functions of a, respectively. In practice we choose a so that the 
computing times are about the same, and we check the calculations by recomputing 
U(x) with a small change in the value of a. 

4. The Buchstab Iteration Formula for qp(x; a, 1). The sieve formula (2.2) is, of 
course, only a special case of a combinatorial identity arising from the inclusion- 
exclusion principle. There is a simple iteration formula associated with the Legendre 
sum of the problem, and following Halberstam and Richert [1] we name such an 
iteration formula after Buchstab who was the first to apply this type of iteration 
formula fruitfully in sieve methods. For our Legendre sum the Buchstab iteration 
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formula takes the form: For 1 < a < b, 

(4.1) T (x; b, l) = > is(d) P(p (d ; a. X(d)l) 

The proof of this is rather simple. Both 8(d) and x(d) are multiplicative functions 
and we always have 8(d)X(d) 1 (mod 4). Therefore, for coprime squarefree odd 
d1, d2, we have 

N(x; d1d2,l)= E 1 = E 1 
ni<x m <x18(d2) 

S(did2) I 8(dj) Ir 
n/ (mod4) n=-X(d2)l (mod4) 

= N( Jj) ; di X(d2)l). 

Next, if d I p(l, b), then d = djd2 where d1 I p(l, a), d2 I p(a + 1, b), so that 

T(x; b, 1) = >E 22 (djpd)p(d2)N(x; dld2, 1) 
dllp(l,a) d2Ip(a+?,b) 

- >2 1i(d2) 2 (d)dN( d dX(d2) 
d2jp(a+1,b) dl Ip(l, a) ( (2) 

= E y~~(d2) (P ; a, X(d2)1) 
d2 Ip(a?+1,b) 8( )(d2) 

which proves (4.1). 
On replacing a with a - 1 and setting b = a in (4.1), we have 

(4.2) q(x; a, 1) = qp(x; a - 1,1)- ( x7; a-1, Xal) 

and repeated application of this gives: For 1 < a < a', 

(4.3) Tp(x; a', 1) = T(x; a, 1) -x> ( t; h - Xhl) 

5. The Computation of U2(x, a). Every Uk(x, a) can be expressed as a k-fold sum 
XU(x/p1 ... P k) over the primes P1, ..., P k. For example, since each number 
counted by U1(x, a) has the form rn where r > p(a), n E U, n < x/r, it follows 
that 

U1(x, a)= > U(x/r). 
r>p(a) 

Similarly, we have U2(x, a) = S(x, a) + T(x, a), where 

S(x, a) = > U(X/p2), T(x, a)= > U(x/rlr2). 
p>p(a) r2 > r1 >p(a) 

The main problem lies with the double sum T(x, a) which can be interpreted 
geometrically as the total weight of the lattice points (r1, r2) in the region p (a) < r, 
< r2, rr2 < x, where each point is given the weight m if x/um+1 < r1r2 < X/Um. 
Observe that the upper limit for r2 in the double sum T(x, a) is x/p(a), and when 
this is large, a direct evaluation of T(x, a) is difficult. We introduce a parameter M 
whereby we shall make a direct evaluation of the contribution from those points 
with r1r2 < x/UM. The remaining points satisfy x/UM < rlr2 < x, and these are 
considered as a counting problem so that their contribution is rewritten as various 
sums involving the r-prime counting function 7T43(z). More precisely, we have the 
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following 

LEMMA. Let 1 <UM < x/p2(a). Then 
T(x, a) = T1(x; a, M) + T2(x; a, M), 

where 

Tl(x; a,M) = U (rr2) - 

Xm+ I<rl-<XM r1 <r2<X/rl UM rlr 

T2(x; a, M) = E E E 7r43(x\-f(X.)) + Mf(XM+l), 

1a 1nt 6M 
X19M +I < r xm, 1 616nt 

ru 

and 

andXX = 1x m =1,2,...,M; XM+ =p(a), 

f(z) = 2-'r4,3(Z)(74,3(Z) + 1). 
Proof. Let us write 

R (x; A, B) = , U( x) 
A<r16B r1<r26x/r1 rlr2 

so that 

T(x, a) = R(x; p(a), x) = R(x; XM+1, xM) + R(x; XM, x1). 

We first consider 

R (x; x.f+ 1, x m) U ( (- + U(X) 
XM+l<rl 6xM rl<r2<.x/rlUM rl r2 x/rluM<r2 x/rl 1 r2 

and we rewrite the second inner sum as 

1 6 m < M x/rl um + I < r2 6 x/rll rl r2) 

But if u , < x/r1r2 < u,,, + 1, then U(x/r1r2) = m, so that this sum becomes 

E M17',3 - 14( x (7, X 
Mr(, 

16,n<M ((rum) '3( rlum+l)) 1rnlM 3 rlum 4 rluM) 

From 

SE 1 = E2 ( 4'3( r ) - )43(r1) 
.xM+I <r1 6.*M rl<r2x/rl UM xM+ I<rl 6 XM xl M 

X~~~~~~~~~~~~~ 
- XM + < rl 6 AM ( 1 M) -f4.3 (AXM + 1) < i 6 q4,3( XM ) 

- XMEl~ 4 3( ) f(xM) +f(xM+1), 
-\+I < rl< X -\Mr4 M 

it now follows that 
R(x; xM+1,xM) = T1(x; a,M) 

+174,3( X) m(f(Xm) f(Xrn+1))Y 
xM+i<r<xM 1rnumM m 

Similarly we have, for 1 < m < M, 

R(x; Xm,+iXm) = E E 7T43( X) -m(f(xm) -f(Xm+i)), 
x.,l <r x., 116nj rum 
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and the required result follows from 
R(x; XM, X1) = E R(x; Xm+ 1,XM).) 

1 " I < M 
The evaluation of T(x, a) is similar to, but more complicated than, that for 

P2(x, a) in the prime counting problem. We first encode the primes p, r in 2 < p 
< /x/p(a) and 3 < r < Fx. For the computation of T1(x; a, M), we also build a 
table of values for U(4n - 3) up to x/p2(a), and we encode the numbers [xm], 
1 < m < M, where M is chosen so large that XM < Fxjp(a); this ensures that the 
upper bound for r2 in T1(x; a, M) is at most Fx/, and the sum can now be evaluated 
from the table of values U(4n - 3). For the computation of T2(x; a, M), we build a 
table of values for 7T43(4n - 1) up to x/p(a). This can be divided into blocks of a 
suitable length so that the values can be encoded into the fast memory of the 
machine as described in [5]. The sum T2(x; a, M) can now be evaluated by running 
this table for 174 3(4n - 1) through the individual blocks and reading off the relevant 
values corresponding to the various points z = x/ru,. 

The sum S(x, a) can be dealt with similarly and we have 

S(x,a) = E (U( ) -M) + E r(xm) -M(a + 1) 
p(a)<p,<xAM P 1 '< M ' 

6. The Computation of (p(x; a, 1). We first describe a simple method of computing 
the Legendre sum (p(x; a, 1). We apply the Buchstab iteration formula (4.1) in the 
form 

p(x; a, 1) = ) tL(d)P( 4(d) 4 X(d)l) 

-F +F2-* * (1) FK 

where 

FO = p(x; 4, 1), 

11 < p< .. p<Pk< p (a) (8 (P 1 ..P k)) 

The number K is the least integer L with the property that any squarefree odd d 
with L + 1 distinct prime divisors p > 11 must satisfy 8(d) > x. The size of K is 
rather modest; for example, K = 5, 6, 6, 7 correspond to x = 109, 1010, 1011, 1012. 

Since 
8(p(1,4)) = 3 * 52 . 7 . 11 = 5775, w(5775; 4, ?1) = 720, 

it follows from periodicity with period 4 * 5775 = 23100 that 

(p (z; 4, ?_1) = 2880( 230 + (p m; 4, ?+1), z > O. 

where m is the remainder of [z] when divided by 23100. If we encode two tables of 
values for sp(4n - 3; 4,1) and (p(4n - 1; 4,-1) (1 < 4n - 3 < 4n - 1 < 23100), 
then p(z; 4, ?1) can be read off and the Legendre sum p(x; a, 1) can now be 
evaluated by nesting all the Fk into a single program. 

When x is large and a is not small (say x > 1012, a > 500), the evaluation of 
p(x; a, 1) by the above method is very time-consuming. In this case, we should use 
the refinement of the Meissel-Lehmer method proposed by Lagarias, Miller and 
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Odlyzko [5] for the prime counting problem. Their method may be described as a 
sophisticated application of the formulas (4.1) and (4.2), with a good truncation rule 
which separates the terms into "ordinary" and "special" leaves of a binary tree 
developed from (4.1). The simple method described above corresponds to having a 
truncation rule in which every leaf becomes an ordinary leaf with "k = 4". There is, 
of course, a similar good truncation rule which will speed up the calculations by 
having special leaves for (p(x; a, 1), but the algorithm for the contribution of these 
leaves will be even more complicated than that for (p(x, a) in the prime counting 
problem. 

7. The Computation of W(x). Since W(x) is given by (1.4), we need only describe 
the evaluation of V(x) given by (1.3). The sum (1.3) is similar to the sum S(x, a) 
except that k is not restricted to primes p > p(a). We introduce two parameters K, 
M where 1 < K < XM. Then, as in Section 5 we find that 

1(X <k K ( k 2 )M K+x (Xm 
- 

MK) e m 

In the first sum here, every term U(z) has z > x/K 2, and each term has to be 
evaluated by the method described earlier. The second sum is evaluated in the same 
way as the first sum for S(x, a); that is, we encode U(4n - 3) for UM < 4n - 3 < 
x/K2 and then run k backwards in K < k < XM and read off the values for 
U(x/k2). 

Again K and M can be chosen to minimize the computing time for V(x), but in 
practice we set 

K = [FX/104] M = U( X1/6 ) 

so that we need to evaluate U(z) individually when z > 108, and simply read off 
U(z) from a table of values when z < 108. 

8. Results. We first give an accurate evaluation of Landau's constant B in (1.2). 
For this purpose, we need to speed up the convergence of the product as follows. We 
write 

4B= H(1 - 2 
= (1 - 41 (1 - 1 + ) 

and observe that 

Furthermore, the right-hand side here is the Euler product for 

(1 -1/22) ;(2)/L (2, X), 

where 

t(2) = 1 = 6 
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and 

_ x(n) - ( 
,,=I n rn=O (4m+1) (4m + 3)2) 

Therefore, 

32L(2,X)B4 = F7.2H(1 4 

The infinite product here converges much more rapidly and L(2, X) can be calcu- 
lated accurately from the Euler-Maclaurin summation formula. Thus, on listing the 
4808 primes r < 105 we find that 

B = 0.76422 36535 89220.... 

D. R. Heath-Brown (private communication) has pointed out that one has 

X (2`) )2`n 2B 2 = J= ( )(1 - 22 

so that B can be computed without any listing of the primes at all. 
We now write W(x), U(x), V(x) for 

Bx 4Bx 2Bx 
9 

S2 XogX 3 Xog- lo- gx ' 2lg '3lg 

respectively so that, from (1.1), (1.3) and (1.4), as x -> , 

W~x)~ W~x, U(x)~ U x), V(x)~ V (x). 

We give the values of W(x), U(x), V(x) and W(x), U(x), V(x) in the following 
tables. 

TABLE 1 

x W(x) W(x) W(x)/W(x) 

10 7 5.40 0.7195 
102 43 35.61 0.8282 
103 330 290.77 0.8811 
104 2 749 2 518.16 0.9160 
105 24028 22 523.07 0.9374 
106 216 341 205 606.58 0.9504 
107 1 985 459 1 903 547.03 0.9587 
108 18 457 847 17 806 052.01 0.9647 
109 173 229 058 167 877 068.32 0.9691 
1010 1 637 624156 1 592 621708.36 0.9725 
1011 15 570 523 346 15 185 052 177.44 0.9752 
1012 148 736 629 005 145 385 805 873.79 0.9775 
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TABLE 2 

X U(X) U(X) U(x)/U(x) 

10 2 2.04 1.0206 
102 14 14.43 1.0309 
103 112 117.85 1.0522 
104 997 1 020.57 1.0236 
105 8 982 9128.26 1.0163 
106 82 305 83 329.21 1.0124 
i07 746 092 771478.55 1.0097 
108X 7 159 654 7 216 521.06 1.0079 
109 67 581 778 68 038 013.07 1.0068 
1010 641696 858 645 465 266.34 1.0059 
1011 6 112 456 540 6 154 269 841.16 1.0068 
1012 58 649 349 743 58 922 647 743.71 1.0047 

TABLE 3 

x V(x) V(x) V(x)/V(x) 
10 4 3.36 0.8394 
102 28 23.74 0.8479 
103 214 193.85 0.9058 
104 1 803 1 678.77 0.9311 
105 15 830 15 015.38 0.9485 
106 142 844 137 071.05 0.9596 
107 1 313 047 1 269 031.35 0.9665 
108 12220699 11870701.34 0.9714 
109 114790260 111918045.54 0.9750 
1010 1 085 885 280 1 061 747 805.58 0.9778 
1011 10 330 026 070 10123 368 118.30 0.9800 
1012 98 719 755 928 96 923 870 582.53 0.9818 

It will be observed that the error term for W(x) is much bigger than the 
corresponding result in the prime counting problem. In fact, if the Riemann 
hypothesis is true, then the error term for g(x) is only O(x'/21og x) and in any case, 
Littlewood proved that this error term changes sign infinitely often so that it can be 
small for large x. On the other hand, we know that the error term for W(x) is 
Q+ (x/(log x)3/2). In fact (see [2, p. 63]), Landau's asymptotic formula has been 
improved to the following: For any fixed integer N > 1, as x -*oo 

N 

W(x) E B~x(logx) ' -j + ? (X(0gX)-t-/2) 
j=l 

where BJ are computable constants. 
We conclude with the following remarks on the actual computations performed on 

the Honeywell Multics System at Loughborough University Computing Centre in 
July 1984. 
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(i) The author is a tyro on computations by machines; he can only write programs 
in FORTRAN, perhaps the least suitable language for the problem. Thus the largest 
integer allowed by the compiler is 235 - 1 < 4 x 10'? and a rather ad hoc and 
clumsy multi-length arithmetic procedure has to be incorporated into the programs. 

(ii) As remarked by Lehmer [7], and shown in [5], the Meissel-Lehmer method is a 
good example of substituting time for storage allocations. We chose to have the 
modest size of only 60 000 stores and the approximate computing times for W(1010), 
W(1011) and W(1012) are 15 minutes, 2 hours and 19 hours respectively. Each entry 
for U(x), V(x) and W(x) has been double checked by varying the parameters a, M 
and K in the associated formulas. 
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